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Quantum eigenfunctions in terms of periodic orbits of chaotic 
systems 
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Department of Physics. Technion. Haifa 32000, Israel 

Received 30 October 1992, in final form 2 February 1993 

Abstract, A resummed formula for the Wigner function, corresponding to an eigenfunction 
of a chaotic system, in terms of periodic orbits. is developed. The infinite sum over periodic 
orbits is effectively mncaled with the help of an extension of a method that was applied to the 
spectral determinant by Berry and Keating. In principle, the formula enables lhe computation 
of eigenstates and the probability density of wavefunctions from classical periodic orbits. The 
conditions for appearance of ‘scars’ are discussed. 

1. Introduction 

The quantal behaviour of systems that are chaotic in the classical limit has been investigated 
extensively in recent years [ M I .  Many of these studies were inspired by Gutzwiller’s trace 
formula that expresses the density of states of chaotic system, in terms of a sum over its 
classical periodic orbits 171. The main problem is that this sum h o t  absolutely convergent 
for any real energy. For this reason some interpretation of these series is required. Several 
resummation methods were recently introduced [8-151. The main’ conclusion from these 
studies is that the sum over periodic orbits should be effectively truncated after a finite 
number of pseudo-orbits. The period length of the longest orbit that should be taken into 
account for the calculation of the eigenenergies is inversely proportional to the mean energy 
spacing. A different and more complicated problem is to find an efficient method to sum 
this exponentially large number (in orbit length) of terms. There are some suggestions for 
such methods that are not related to the present work [ 161. Since the spectrum is related 
to the corresponding eigenfunctions, one would like to develop a method that will enable 
us to express the eigenstates of the system~in terms of periodic orbits, in the semiclassical 
limit. This is the main subject of the paper. 

For some chaotic systems it was found that some eigenstates are strongly peaked near 
periodic orbits that are unstable. These imprints of the periodic orbits were termed as 
‘scars’ by Heller [17, IS]. Heller gave a heuristic argument for the existence of scars, and 
an estimate of their magnitude. The scar phenomenon was investigated numerically [19-261 
and experimentally [27,28] for a variety of systems. It was analysed in the framework of 
periodic orbit theory by Bogomolny [29] in the configuration space, and by Berry [30,31] in 
phase space. In order to get meaningful results they calculated the corresponding function, 
namely the Green function y d  the spectral Wigner function, smeared over some energy 
range. Therefore the relation of these functions to eigenstates corresponding to a well 
defined eigenenergy is not transparent.. 

Currently, the wavefunctions of chaotic systems are also investigated [32] using time 
domain techniques [33]. In this approach the eigenstates are constructed by direct Fourier 
transform of the Van-Vleck propagator. 
03055-4470/93/092113+25S07.50 @ 1993 IOP Publishing Ltd 2113 
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In the present paper an approximate semiclassical formula for the eigenstates is 
developed. It is expected to be correct in the leading order in Planck‘s constant E .  The 
starting point is a semiclassical formula for the resolvent operator which is almost identical 
to the formula of the spectral Wigner function developed by Beny [30] for finite energy 
smearing. In the limit of zero smearing the meaning of this formula is not clear as is 
the case for Gutzwiller’s trace formula. The technique that was developed by Beny and 
Keating [8] in order to obtain a meaningful formula for the spectral determinant will be 
applied extensively in the present work. 

The main result of the paper is a formula for the Wigner function corresponding to 
an eigenstate in terms of effectively finite number of periodic orbits. This expression is 
integrated over the momenta to give the corresponding probability density. In addition an 
approximate expression for the strength of scars in terms of the periodic orbits is obtained. 

The outline of the paper is as follows. The resummation technique that was used by 
Beny and Keating [SI for the spectral determinant is summarized in section 2. Derivation 
of a semiclassical formula for individual wavefunctions in the Wigner-Weyl representation 
is presented in section 3, and an analogous formula for the semiclassical probability density 
of the eigenstates is derived in section 4. In section 5, the results of the previous sections 
are used in order to investigate the appearance of scars in individual wavefunctions. The 
results as well as some other related problems are discussed in section 6.  

2. The spectral determinant 

The semiclassical quantization rule for chaotic systems is usually formulated in terms of the 
dynamical zeta function t S ( E ) ,  also called the Selberg zeta function [8,9]. This function is 
defined as a product over primitive periodic orbits, 

where the subscript p denotes a primitive periodic orbit, & ( E )  is its corresponding action, yp 
is a phase determined by the focusing paths close to p ,  and up is the instability exponent. The 
eigenenergies of the system are the zeros of <@), thus one may formulate the semiclassical 
quantization rule for chaotic systems to be 

In general, &(E)  is not a real fucction for real values of E. Nevertheless, multiplying this 
function by a phase factor e-inN(EJ where f i ( E )  is the mean energy staircase, gives the 
semiclassical approximation of the spectral determinant which is a real function for real 
values of E [9]. Hence, it is convenient from now on to study the spectral determinant, 

Although there are some indications that one may obtain a good approximation for the 
lower zeros of A ( E )  by considering the real part of this function with the Euler product 
(2.1) mncated at some point [341, usually, resummation techniques are based on expressing 
A(E)  as a Dirichlet sum over pseudo-orbits, 

(2.4) 
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Pseudo-orbits are linear combination of periodic orbits and may be obtained by expanding 
the Euler product (2.1) and collecting the terms according to some rule. Here, the pseudo- 
orbits will be ordered according to their period length. The following discussion regarding 
the calculation of the pseudo-orbits’ amplitudes c, will be confined, for simplicity, to the 
case of two degrees of freedom. Nevertheless, the structure of (2.4) is general and also 
holds to higher dimensions. 

Applying the Euler identity, 

to the product of the dynamical zeta function (2.1), with the identification x = e-’p and 
Q = exp((i/h)S,(E) - iyp - $up) yields 

where the m = 0 term is unity, Mp is the monodromy matrix of the primitive periodic 
orbit p and e*”* are its eigenvalues. The phase factor suggests interpreting m i s  a repetition 
number. Expanding the product (2.6) and collecting terms so that the sum of the periods of 
all the orbits which construct pseudo-orbit p equals 5 gives for systems with two degrees 
of freedom the result (2.4), where the amplitude c, of the pseudo-orbit p is 

with Tp the period the primitive periodic orbit p .  and m p  is the number of its repetitions. 
The action of the pseudo-orbit S, is a linear combination of the actions of the individual 
orbits, 

The relation between the period of the pseudo-orbit I, and its corresponding action S, is 
clearly I, = as, /a E. 

For long orbits and pseudo-orbits of ergodic systems 7, and S, are proportional and 
satisfy the relation [35], 

where D is the number of degrees of freedom of the system, Q ( E )  the classical phase-space 
volume with energy less than E,  

Q ( E )  =//dpdq@[E-‘Wq,p)l (2.10) 

and Q‘(E) is its derivative with respect to the energy. In the above equation, 0 is the unit 
step function. 
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The exponential growth in the number of periodic orbits as their period increases implies 
that the formal sum of (2.4) is not absolutely convergent [IO, 361. Convergence of this 
formula is obtained for a complex value of I/h satisfying [PI 

1 h(E)Q'(E)  
Im- > 

h 2DQ(E) 
(2.11) 

where h ( E )  is the metric entropy, which was assumed to be equal to the topological entropy. 
Convergence of the semiclassical expansion for complex values of the energy was discussed 
by Eckhardt and Aurell [36]. 

The analytic continuation of (2.4) into the real axis of I/h is based on two important 
relations. The first one is the exact functional equation, 

A(E,  h )  = A(E,  4) (2.12) 

which holds even for systems without time-reversal symmetry. This is due to the fact 
that changing f i  to -h transforms the Hamiltonian into its complex conjugate leaving its 
eigenvalues unchanged. The second relation is 

P e-LTkE)+(i/hSa --f [,-- e-inAWl+lifi)S, 1' if h +  -h. (2.13) 

This relation follows from the behaviour of the time-dependent Schrodinger equation in the 
semiclassical limit, under h reversal [PI. 

Imposing the exact functional equation (2.12) on the semiclassical approximation and 
using relation (2.13) enables one to derive an asymptotic series which corresponds to 
analytical continuation into the real axis of l/h. The first term of this expansion is analogous 
to the main sum of the Riemann-Siegel formula for the Riemann zeta function [IO], with 
the sharp cut-off smoothed by the complementary error function. For ergodic systems the 
centre of this smoothing is at the pseudo-orbit pa whose period is 

'T-. = nhd(E) (2.14) 

where J(E)  % Q'(E)/(2xh)D is the semiclassical smoothed level density. The high-order 
terms of this asymptotic expansion pick their contributions from pseudo-orbits located near 
the smoothing centre. Numerical tests of this expansion for the Riemann zeta function [8] 
have shown that the main sum alone already gives very good results. The approximate 
expression for the spectral determinant corresponding to the main sum of the Riemann- 
Siege1 formula is, 

where 

(2.16) 

(2.17) 

and 

D(D - 1)S2(E) 
B ( K ,  h ,  E)* K2 + i 

2(2nfi)D-' ' 
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The smoothing centre (2.14) is found from the equation :(fi*,  f i ,  E )  = 0 using the non- 
trivial relation (2.9) which holds for ergodic systems. K is a free fine-tuning parameter, 
chosen to satisfy 

It is assumed here that D ( D  - I)Q(E)/2(2~h)~-l << K 2 .  For small f i  or large E these 
requirements are consistent. Thus, the pseudo-orbits which contribute effectively to the 
main sum (2.15) are those for which 

(2.18) 

The higher terms of the asymptotic expansion get their contribution from pseudo-orbits with 
period in a small interval near ?;., namely 

The minimal width of the smoothing region and of the correction terms is obtained for 
K2 = D ( D  - 1)Q(E)/2(2nh)D-'. 

3. Semiclassical Wigner functions 

In this section, the semiclassical formula for the Wigner function, corresponding to an 
eigenfunction, is derived. First a 
semiclassical expression for the resolvent operator in its Wigner-Weyl representation is 
derived for complex values of l j f i .  The starting point of this analysis is a semiclassical 
expression for the resolvent operator in the Wigner-Weyl representation, which is similar 
to the scar formula obtained by Berry [30,31]. Then, the resolvent operator is analytically 
continued into the real axis of 1 fh,  and the Wigner functions are identified from the residue 
of the different poles of the resulting expression. 

3.1. The semiclassical resolvent operator 

Let %(z) be the Hamiltonian of a chaotic system with D degrees of freedom where 
2 = (41. . . . q D .  P I , .  . . P O )  are the coordinates and momenta The resolvent operator is 

The discussion will be .divided into two stages. 

- 1 
R =  

E+ie-'F? 

which may also be written as a time integral over the propagator, 

(3.1) 

We define the resolvent Wigner function to be the Weyl transform of this operator. nus,  
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where Wu(x) is the Wigner function of the eigenstate and Ea is its corresponding 
eigenenergy. The main goal of this work is to develop approximate expressions for the 
W&). 

Using the time integral representation of the resolvent (3.2). one may express the 
resolvent Wigner function (3.3) in terms of the Wigner propagator, 

as 

The semiclassical analysis continues by introducing the semiclassical approximation for the 
propagator (3.4) as a sum over classical trajectories connecting q - tq' with q + $4' in time 
I ,  and performing the integrals of (3.4) and (3.5) in the stationary phase approximation. This 
procedure is identical to the one inmduced by Berry [30]. The result one obtains for the 
resolvent Wigner function in the semiclassical approximation is 

1 
W ( x ;  E )  = + WLai(x; E. E )  E f i s - Z ( x )  , 

It contains contributions of two sorts: the first term originates from the zero-length orbits, 
while the other term is the contribution of closed periodic orbits (primitive and repeated) 
as well as other orbits in their vicinity. Each one of the latter has the form 

where 

(3.7) 

The period of the periodic trajectory p is Tp, while M ,  is the corresponding monodromy 
matrix, S, is its action and y, is the Maslov phase. The other terms of (3.7) are expressed 
in terms of the following canonical variables: 

H, t ,  and X(Q, P) = ( Q I ,  ... Q D - I ,  PI, ... PD-I) (3.9) 

where H is the Hamiltonian, X are the 2 0  - 2 coordinates on the Poincard surface of 
section, and t is the time along the periodic orbit measured from the surface of section. 
The exponent term in (3.7) forms a structure of quadratic fringes as x moves off the closed 
orbit. In this quadratic term I is the unit matrix, while J is the unit symplectic matrix, 

J = ( O  - I  0 I )  . (3.10) 

The Airy term AP(x,  E )  describes the pattern of fringes as x moves off the energy surface. 
This factor involves the phase-space velocity x and acceleration x at point x on the orbit. 
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Note that the differences between formula (3.6) and the corresponding one derived by Berry 
are due to the fact that here we consider the resolvent operator and not only its imaginary 
pm. In the derivation of (3.6) it was assumed that 1x1 and l'H(x) - El are small, namely 
that the closed orbits are in the vicinity of x. Contributions from more distant orbits are 
effectively averaged to zero. 

As stated by Berry [30], the convergence of formula (3.6) as E -+ 0 is doubtful, and 
therefore one cannot resolve individual W, from it. However, convergence of (3.6) may also 
be achieved if, instead of looking at complex values of the energy, bne considers complex 
values of 113 satisfying condition (2.11). Thus henceforth E will be considered infinitesimal 
(and therefore it will be omitted from most of the the following formulae), while 'l/k will 
contain an imaginary part which ensures the convergence of (3.6). 

It turns out that in order to identify the Wn(x). one needs to sum up the contributions 
from the repeated orbits. Doing it for the general case involves complicated expressions. 
Therefore, for simplicity, the following, discussion will be restricted to systems with two 
degrees of freedom (D = 2) which afe hyperbolic. Thus, it will be assumed that the 
eigenvalues of the monodromy matrices M p  are e*"n. Generalization of this analysis to 
some other cases is straightfonuard. 

and to write it as a sum over powers of e-''. Starting from the amplitude, it cleariy satisfies 
To sum up the contributions from all repeated orbits, one has to modify (3.7) for 

(3.11) 

It is somewhat more complicated to expand the exponent term in (3.7). Let us introduce the 
eigenvectors of the monodromy matrix, ?I,'(.) and w;(z), corresponding to the eigenvalues 
e++ and e-"@ respectively. Obviously, these vectors depend on their position along the 
periodic orbits, since M, does. Yet, the corresponding eigenvalues do not depend on this 
position. The eigenvectors $(z) also build the matrix which diagonalizes the monodromy 
matrix. It may be represented as 

where { u ~ ) i = l , ~  are the components of the eigenvectors wt(z), and .,'AV; is the symplectic 
area of the parallelogram defined by these vectors. It is shown in appendix A that using the 
above definitions one can write the quadratic term in (3.7) as 

- M,- I  
M,+I 

XJ- X = tanh (2) XR,(x)X (3.13) 

where the matrix RJx) is 

and 

U* i - PZ R, -- 
U;, . 

(3.14) 

(3.15) 

When the instability exponent u p  is large, z = e-'; is a small parameter and tanh(up/2) is 
almost independent of up  and very close to 1. Thus the quadratic term in the exponent of 
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(3.7) can be approximated by (3.13) with tanh(u,/2) % 1. An exact expression is obtained 
by expanding the exponent term around z = 0. This expansion takes the form 

0 Agam and S Fishman 

m 
e l ~ l f i l ~ J ~ ~ , - l ~ / c M , + l l X  = $1 eiiIfilxRpX (3.16) 

(=a 

where the functions fF1 are 

(3.17) 

Combining (3.11) and (3.16) together with (3.7) we obtain the required new form of WrW, 

WP,,(z; E )  = -4=iAP(z, E )  ggl e-Up(h")e"I"(S't~R~X)-'" (3.18) 

where gg' are polynomials of the variable 

m :  

n=O 

(3.19) 

defined along the primitive periodic orbit p. In terms of $'I these functions are given by 

I -  
b = b(x)  = - X R p X  R 

(3.20) 

The first few of them are 

g$(b) = 1 (3.21) 

To see that now everything is prepared in order to sum up the repetitions of the primitive 
periodic orbits, consider the primitive periodic orbit p and the orbit which consists of r 
repetitions of p. Let Wg& be the contribution of these repeated orbits to (3.6). One may 
obtain W& from (3.18) for W&, simply by replacing S,, up, and y, by these quantities 
multiplied by r. Note that the Airy factor (3.8), as well as the matrix Rp and therefore 
the functions ggl, do not depend the number of repetitions r. Hence, the summation 
over the repetitions of (3.18) becomes trivial, since it is a simple geometric series. Let 
W p ( z ;  E) be the contribution from the primitive periodic orbit p and all its repetitions; 
thus WP(z; E) = E:*=, W E .  It is straightforward to verify that 

g:'(h) = -1  - 2b gi2'(b) = 1 + 4b + 2b2. 

The expression for the resolvent Wigner function in terms of WP is clearly 

W ( z ;  E )  = Wo(z; E )  + c wqz; E )  
P 

with 

1 
E - X ( z )  

WO(%; E )  = 

(3.23) 

(3.24) 
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where now the summation is only over primitive periodic orbits, since their repetitions are 
already taken into account. The common denominator of all the WP(x; E )  is ( , ( E )  of 
(2.1). Multiplying the denominator and the numerator by e-inNiE1 enables one to write the 
resolvent Wigner function in a form which reveals its poles, 

(3.26) 

Note that due to the imaginary part of l / h ,  all sums and products in (3.25) converge. 
However, this formula cannot be used for real values of l /h,  and therefore analytic 
continuation is needed. 

3.2.. Analytic continuation 

A proper expression for (3.25) at real values of l/fi will be obtained in what follows, using 
the same powerful method of analytic continuation in the variable l/h [SI described in 
section 2. The key for such resummation is the exact functional equation satisfied by the 
Wigner functions for real h;  namely, 

where 

Wa(z,h) = hDW,(x) (3.28) 

and We@)  is the Wigner function corresponding to the state &. Like (2.12). the relation 
(3.27) also holds for systems without time-reversal symmetry. This is shown in appendix B. 

The present form of the resolvent Wigner function (3.25) is still inadequate for our 
purpose, and it is necessary to convert it into a more appropriate one. Starting from the 
functions A'p.")(E) which are represented by (3.26) as Euler products, we convert them 
into Dirichlet sums over pseudo-orbits, 

A{P.")(E) = _. 1ccLl {p.rt) e -izK'18)+lifi)S,c,e (3.29) 
P 

where 

sP.p = SP + s, (3.30) 
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with S,, given by (2.8), S, is the action of the primitive periodic orbit p ,  and c;”~’ are 
amplitudes which are different from those of the spectral determinant (2.7). The construction 
of these amplitudes is discussed in appendix C. 

Next, it is convenient to remove the explicit dependence of g$”(b) on h. This is done 
by introducing a dummy variable q which multiplies the quadratic term of the exponent of 
(3.25), namely by the replacement 

0 Agam and S Fishman 

TR,X --f qXRpX. (3.31) 

The functions g!’ are now expressed as polynomials of derivatives with respect to q. For 
example, 

S , ( l  (O’ a ) - - 1 (3.32) 

After taking the derivatives, one has to set q to 1. Defining also 

’ 

g;)(a,) = - I  - za, $)(a,) = I + 4aq + 2 ( a , ~ ~ .  

si(., U) = S,,,, + qXR,X (3.33) 

and substituting (3.29), (3.31) and (3.33) into (3.25) yields the resolvent Wigner function, 

with N(x; I /h)  as a triple sum of the form 

(3.34) 

(3.35) 

where p runs over primitive periodic orbits, p corresponds to a sum over pseudo-orbits 
resulting from the expression (3.29). while the sum over n takes into account the corrections 
which originate from the finite value of the instability exponents. 

Equation (3.34) is now in a proper form for the analytic continuation. Note that X(x) 
is independent of f i ,  therefore only the second term of (3.34) requires analytic continuation. 
This will be done for the denominator and the numerator separately. The denominator is 
the spectral determinant, and its analytic continuation was already described in section 2, 
following [XI. Therefore we are left only with the problem of the continuation of the triple 
sum of (3.35). Following the analysis of the spectral determinant (section 2 and [8]) it will 
be shown that this sum alone is invariant under h reversal. For this purpose it is instructive 
to introduce the regularized fonn of the spectral determinant, where each factor ( E  - E.) 
is replaced by C(E, &)(E - Ea),  namely, the form 

(3.36) 

of the spectral determinant is used. The regularizing function C ( E ,  E,) is chosen to make 
the product converge. It will not be specified, but it is assumed to be real and non-zero 
when E is real [37]. The expressions (3.3) and (3.34) for the resolvent Wigner function 
can be written as fractions and compared. Taking a common denominator and comparing 
between the numerators yields 

A(E) = n C ( E ,  E d E  - Ea) 
a 

A ( E ) + [ E - X ( z ) I N  = [ E - X ( z ) l C C ( E , E a ) ~ = ( x , ~ )  
a 

(3.37) 



Eigenfunctions of chaotic systems 2123 

The functional equation (3.27), together with the invariance property of the eigenvalues E, 
under h reversal, lead to the corresponding symmetry of the right-hand side of (3.37), and 
consequently, 

(3.38) 

Figure 1. The integration conmm C+ and C- in the 
z plane, and their relation to the entropy barrier (211) 
forD=2 .  

Note that the resulting numerator- (3.37) of the resolvent Wigner function (3.3) is a 
continuous function of the energy E ,  therefore E may be taken to be identically zero in 
(3.37) and (3.38). 

By Cauchy’s theorem N(z; l / h )  is expressed as a contour integral of the form 
(following [SI) 

(3.39) 

where C* are the contours shown in figure 1. The function ~ ( z ,  h) is even in z, analytic 
within the integration strip, and satisfies y(0 ,  h)  = 1. This is an analytic continuation of 
N from the region of’complex I/h where the sum (3.35) is absolutely convergent to the 
real l/h axis. It assumes the analyticity of N in a sufficiently wide strip around the real 
axis. A similar assumption about the spectral determinant was made in [8]. With the aid 
of relation (3.38) one obtains 

Choosing the integartion path C+ sufficiently far from the real axis of l/?i so that condition 
(2.11) holds ensures that the triple sum of (3.35) converges evevwhere on C+. Therefore 
one may substitute (3.35) into (3.40) to obtain 

where 

(3.41) 
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Note the slight change in the definition of the arguments of the Airy factor AP(z,  E ;  l/h) 
and the mean level staircase m ( E ;  l/h). It is introduced in order to demonstrate the explicit 
dependence of these terms on 1/h. 

0 Agam and S Fishman 

A similar relation to (2.13), namely 

, C p , ~ l e - i ~ ~ C E ) + C i / h ) ~ ~ l z , ~ )  ~ , l p . ~ l e - i n ~ ~ E ~ + ~ i / f i l ~ ~ ~ z , ~ ~  ]* if -E (3.43) 
JJ [ J J  

holds also for the pseudo orbits of the resolvent Wigner function. This relation follows from 
the formula (C.11) for c y ' ,  since under h reversal the Maslov phases of that expression 
and the mean level staircase m ( E )  change their signs. One may understand these sign 
changes by examination of the time-integral representation of the resolvent operator (3.1) 
which under h reversal transforms into 

. m  

(3.44) 

Note that the convergence of the above integral is achieved for negative values of E. Thus 
under h reversal E + -E, and therefore the imaginary part of the resolvent operator also 
changes its sign. The density of states is proportional to the trace of this object, therefore, 
also the mean energy staircase n(B) changes its sign when f i  -+ 4. The Maslov phases 
change sign under h reversal since the Wigner propagator K w ( z ;  I) of (3.4) is transformed 
into its complex conjugate under A reversal. Note that also the functions @)(a,) in the 
triple sum, which do not depend explicitly on h, are invariant under fi  reversal, while the 
Airy factor (3.8) changes sign under h + 4. 

From these properties of the terms which construct Up,,+(I/h), and by an argument 
which involves deformation of the integration path C+ to the real axis, one concludes that 

7i=ii dt e-ci/h)cE-~~lr+er/h . 

(3.45) 

Therefore using (3.41) one may express the triple sum of (3.35) as a manifestly real function, 
namely 

(3.46) 

This formula makes sense only if all the sums and integrals converge. This may be 
achieved by choosing [8] 

y(z ,h)=e  -~K%'lhl (3.47) 

where K is a constant which plays a similar role to the one introduced for the spectral 
determinant (see section 2). 

In order to perform the integral (3.42), the Airy factor is represented as an integral of 
the form 

(3.48) 

where 

(3.49) 
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The exponent factor is expanded as 

where 

(3.50) 

(3.51) 

and vm are the coefficients of the expansions. The asymptotic expansion of the triple sum is 
now obtained by integration over z. The higher terms of the expansion (in the terminology 
of [81) correspond to the terms of higher power in z. Here we will confine our attention 
only to the lowest-order term of the m expansion corresponding to (3.50). This is given by 

Performing the integration over z yields 

and 

(3.55) 

(3.56) 

where B ( K ,  f i ,  E )  is given by (2.17) for 0 = 2 ,  while K is a free-tuning parameter, and 

- - 
(3.57) 

Q ( E )  
2xh t p P ( ~ u .  2, E ,  i7) %S~CX, i7) - - . 

Finally one finds 

(3.58) 
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Formula (3.58) is the leading term in the asymptotic m series resulting from (3.48) 
and (3.50). Taking the derivatives~ with respect to q results in two sorts of contributions. 
One comes from differentiation of the exponents exp[-irrrl’(E,)+(i/fi)Si(z, q)], while the 
others result from differentiation of the complementary error functions Je.p. or the Gaussians 

Because the contributions of the second sort are proportional to Gaussians centred at 
(2.14), these will pick up their contributions only from pseudo-orbits in the vicinity of the 
smoothed cut-off (2.19). However, from the structure of the asymptotic expansion described 
in section 2 for the specnal determinant, it is clear that these contributions correspond to 
higher orders of the full asymptotic expansion. Therefore, confining our attention only to 
the main sum of the expansion, the result is obtained by considering only terms which after 
the differentiation are multiplied by the complementary error function term. These may 
be obtained by substitution of (3.20) and (3.21) for gF1(aq) and setting q = 1. Thus, the 
approximate semiclassical formula for the resolvent Wigner function is 
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(3.59) 

(3.60) 

(3.61) 

The formula for the Wiper-Weyl representation of the eigenstate @m, which is the 
central result of this paper, may now be obtained from (3.59). In the view of level 
repulsion in chaotic systems, one may assume that almost all the zeros of A(E) are simple. 
Thus if E, is an eigenvalue then when E + E, the spectral determinant takes the form 
A ( E )  = A‘(E,)(E - E d ,  and in the limit E + 0, one may identify the corresponding 
Wigner function W&) of (3.3) as the residue of the expression (3.59) at E = E, divided 
by h2, thus 

Q ( E )  
2rrfi t p ( P ,  2, E )  = &, z, E ,  q = 1) = S,(Z) - -. 

Note that the contribution from WO(X, E )  which comes from the zero-length orbits takes 
the form 

if X ( z )  = E, I otherwise. 
W,(X) = (3.63) 

However, it is defined only on a subset of measure zero of the phase space, thus for any 
practical application, such as calculation of matrix elements etc, its contribution vanishes. 
This term is therefore dropped from (3.62). 
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The phase qp(z)  is for most of the pseudo-orbits negligible compared with e&, z, E,). 
The reason is that pP(r) is a local term corresponding to properties of the close vicinity of the 
periodic orbit p .  Note that the derivation of (3.7) and (3.8) in [30] is based on linearization in 
this vicinity, therefore pp(7) is much smaller than the corresponding action of the periodic 
orbit p .  Thus for almost all the pseudo-orbits the corresponding complementary error 
function term isPractically independent of q(r). For these the integration over 5 may be 
performed &overing the Airy term (3.8). This argument does not hold for the pseudo-orbits 
with periods near the cut-off, resulting from the error function. However, these contribute 
to higher orders of the asymptotic expansion. Thus, confining our attention only to the 
lowest order of the asymptotic expansion reduces (3.62) to 

(3.64) 

The above formula, which represents the Wigner function- corresponding to the eigenstate 
&, as a sum over periodic orbits, is the central result of this paper. In principle it enables 
us to calculate the eigenstates in the semiclassical approximation. Due to rapid oscillations 
of the contributions from orbits that dismt from a?, where~approximation (3.7) does not 
hold, these are expected to average out to zero. 

It is simple to show that a similar derivation to that of the spectral determinant yields 
a formula for A’(E) appearing in (3.64). To the lowest order of the asymptotic expansion 
it is given by 

as can be seen from differentiation of (2.15); All the quantities involved in this formula &e 
defined in section 2. - 

4. The probability density 

One may obtain the probability density, &(g) = lt,hm(q)Iz, simply by projecting (3.64) 
for the Wigner function onto, the configuration space. Similar to the case of the Wigner 
function, the following discussion will be restricted to the lowest order of the asymptotic 
expansion. 

The integration over the momenta will be performed using the canonical variables 
defined by (3.9). Integrating over ‘H is straightforward using the normalization property of 
the Airy function, 

Ai@) du = 1. (4.1 ) I 
The integration over the momenta P of the Poincar6 surface of section. for each one of the 
primitive periodic orbits, involves the quadratic term, 

X R , X = R ; ~  ( P + ~  y)z -- :; (4.2) 



2128 

where RP2 and R& are the ma@x elements of Rp defined by (3.14). The integration 
is complicated since this term appears also in the complementary error function 
Ekfc(&,(fi, x, E , ) / B ( K , f t ,  &)a}. Yet, the complementary error function term may be 
expanded m u n d  X = (Q, P = -R&Q/R&). This expansion consists of this function 
evaluated at this point, and higher-order terms which are proportional to Gaussians centred 
at (2.14). However, the higher-order terms correspond to higher orders of the asymptotic 
expansion and for a calculation in the lowest order these may be ignored. It is now 
convenient to express the functions gF1 in terms of the derivatives a, as described in 
section 3. Thus, to the lowest order, the integration over P becomes a trivial Gaussian 
integral, and after changing the variable f (which is the time along the periodic orbit 
measured from the Poincare section) to q .  which is the coordinate along the orbit, one 
obtains 
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~~ ~~ 

where 

and 

(4.3) 

(4.4) 

(4.5) 

while Q is the coordinate transverse to the orbit, and q is the velocity along the orbit. 
The pattem of the quadratic fringes, in the vicinity of the periodic orbit p .  changes 

along the orbit according to the factor R$(q). Singular points appear whenever R:* = 0. 
These points are the self-focal points, and a considerable enhancement of pa(q) is associated 
with them [29]. However, similar to caustics, at the self-focal points and their vicinity, the 
semiclassical approximation (4.3) is not valid. A formula for these regions may be obtained 
as well. 

Formula (4.3) for the probability density of individual eigenstates is the resummed 
version of Bogomolny’s formula [29]. In the latter the convergence of the periodic orbit 
sum is achieved by averaging over a small interval of energy, therefore it is inadequate for 
describing individual wavefunctions. 

5. Scars, and the A@‘.*)(E) functions 

Some of the features concerning the formula for the semiclassical approximation of the 
Wigner function (3.64) will now be discussed. In particular, we will be interested in the 
mechanism which leads to a scarred wavefunction. It will be argued that this mechanism 
is related to the functions A‘P,”’(E) defined by (3.26). 
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The main character which formula (3.64) reveals is that only a finite number of primitive 
periodic orbits participate in the construction of the eigenfunction at a given energy E,. 
For ergodic systems these are the orbits with period Tp satisfying approximately 

Condition (5.1) follows from the factor of the complementary error function, where the 
influence of the local term XRpX is ignored since it is negligible compared with the 
corresponding periodic orbit action S,. It also reveals the  existence^ of an ‘analytical 
bootstrap’ between long and short periodic orbits, suggested by Berry [30]. The set of 
primitive orbits contributing at a given energy is approximately the one that contributes to 
the spectral determinant. It is satisfying that this ‘analytical bootstrap’ extends beyond the 
spectral determinant and also~corresponds to the structure of the wavefunctions in phase 
space. 

A series of functions, labelled by the index n,~is associated with each one of the 
primitive periodic orbits. From the last factor in the expression (3.26) for h‘P.”’(E), which 
is proportional to e-udi+n), it is .obvious that usually the dominant contribution will come 
from the terms with n = 0. However if the instability exponent up is small for some 
particular orbit, one should consider also the higher terms due to n = 1,2, 3, etc. 

This zero~term n = 0 forms a pattem of quadratic fringes in phase space transverse 
to the orbit with spacing between fringes of order hi near the periodic orbit, and of order 
h far from it. The fringes pattem changes along the orbit since the eigenvectors of the 
monodmmy matrix change and, therefore, also the matrix R,,(z). 

However, when U,, is small, contributions from higher values of n may also be 
important and these will interfere. The nth term consists of the quadratic fringes factor 
e-ci/fils~cs multiplied by the function gr’(b) which is a polynomial of order n in the 
variable b = (i/fi)XRpX, therefore for small u p ,  as n increaces, these corrections may 
become significant at regions which are more distant from the location of the primitive 
periodic orbit p .  

We turn now to re-examine the expression (3.25) for the resolvent Wigner function at 
complex values of 1fi. For the corresponding Wigner functions (evaluatedat complex 
l / f i ) ,  each one of the g:’ terms described above is multipli@ by a different function of the 
energy, namely Acp,”](E).  Unfortunately, after the analytic continuation these functions lose 
their individual meaning, since the functional equation (3.38) holds for the whole numerator 
M(z; l/h) and not for each one of the A1p.n)(E) functions. 

When a wavefunction is scarred and only few periodic orbits contribute to (3.64). one 
expects these functions (or related functions) also to have a meaning for real values of f i .  
For this purpose it is instructive to integrate the Wigner function over a small domain in 
phase space rP which surrounds~the primitive periodic orbit p .  The tube rp surounding 
the orbit is assumed to be sufficiently large so that the integration may be performed by 
the stationary phase approximation. The integration becomes simple using the variables 
X, t ,  and X ( Q ,  P )  = (el, ... QD-,, PI, ... P D - ~ )  defined by (3.9). Integration over 
X is straightforward due to (4.1). Before integrating over X it will be convenient to 
express gr) in terms of the derivatives a, as described in section 3, and to expand the 
complementary error function term around X = 0. Limiting ourselves only to the lowest 
order of the asymptotic expansion implies that the only contributing term is the zeroth-order 
one, where the complementary error function is evaluated at X = 0. The higher terms of 
the expansion in X are proportional to Gaussians centred at the cut-off, therefore these 
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pick up their contribution from a small number of pseudo-orbits. These are the ones which 
satisfy (2.19). The integration over X is now simple, and noting that Det(Rp) = -1 leaves 
us with an integrand which is independent of i. Thus after the integration overt one obtains 

0 Agam and S Fishman 

where T,, is the period of the primitive orbit p. SIL.p is the pseudo-orbit action defined 
in (3.30) and Q(E,) is the classical phase-space volume with energy less than E,. After 
taking the derivatives, r~ should be set to 1. It is simple to verify that g~l (a ,J l /q lq=~= 1 
for all n. This result suggests that it is plausible to define the &(p ," ) (E)  functions at real 
values of A to be 

These are the resummed versions of (3.29). For a state that is scarred by a periodic orbit p', 
only terms corresponding to this orbit are expected to be important in the sum (3.25). For 
such a state, AIP'."'(E) can be approximated by & ( P ' . " ) ( E ) ,  and no further resummation 
is required. For states that are not scarred by the p'th orbit, A(P*."](E) have no meaning 
for real values of Z. In the view of the results (5.2) and (5.3) it is instructive to define the 
weight of a scar for the eigenstate &, which corresponds to the primitive periodic orbit p 
by 

where 
m 

&(E)  = &"'."'(E). 
"=O 

(5.4) 

(5.5) 

The normalization property of the Wigner function, 

W,(a:) da: = 1 (5.6) 

implies that the scar weight Y,,(E,) cannot exceed 1 provided the tube I'p is sufficiently 
wide. Nevertheless, when an eigenstate $m is scarred along some orbit p", one would expect 
its corresponding weight Yp.(E,) to be close to one, while all the others approach zero. It 
tums out that the function Y,,(E), expressed in terms of periodic orbits, provides a useful 
tool in order to predidthe appearance of scars along the periodic orbit p. For this purpose 
one has to calculate this function on the spectrum, and to check at which eigenenergies it 
approaches 1. The corresponding wavefunctions will be scarred along the orbit p. 

The functions !+(E) appeared recently in a different context in which the diagonal 
matrix elements of a smooth operator were calculated semiclassically [38]. Let 0 be a 
smooth operator. Its diagonal matrix element corresponding to the state 1(1, is semiclassically 
given by 

s 

(5.7) 



Eigenfunctions of chaotic systems 2131 

where 

and 

0, = l” dfU(9,Ch P&)). (5.9) 

Up to the factor e-iniCicE’ which is inserted here for convenience, Z is the zeta function 
for the matrix elements. Its structure is similar to that of the dynamical-zeta function (2.1) 
except it contains an .additional term 0, which is the classical value of the operator U 
integrated along the primitive periodic orbit p .  Taking the derivative with respect to in 
(5.7) and substituting 17 = 0 results in 

(5.10) 

as is clear from (3.29) and (3.26). One may choose, now, the operator U lo be the 
characteristic function over small region rp along some particular periodic orbit p in the 
phase space. Clearly this choice will reduce (5.10) to (5.4). Ignoring convergence problems, 
it is clear that the expression (5.7) for the diagonal matrix elements is an approximation 
which one may obtain from the general semiclassical formula for the diagonal matrix 
elements using the Wigner functions 

We I 0 I ‘#a) = 1 d= wd=)Wc). (5.11) 

The semiclassical formula for the Wigner functions (3.64) also provides a way to calculate 
semiclassically off-diagonal matrix elements in terms of periodic orbits. However, this issue 
will be discussed elsewhere. 

An important property satisfied by the functions &(E) is their direct relation to the 
derivative of the spectral determinant (3.65) evaluated on the spectrum. It is given by the 
following sum rule: - .  

hA’(Ed = c T p A p ( E a ) .  (5.12) 

This sum rule is a manifestation of the normalization of the Wigner function (5.6). It can be 
obtained from (5.10) with the choice 0 = 7. One may derive it directly by differentiation, 
with respect to the energy, of the spectral determinant, represented as an Euler product (2.3). 
and analytic continuation of the result to the real l/fi axis. 

The understanding of the functions & ( E )  or &(pal(E) is therefore of great importance, 
and it is crucial in order to provide a coherent explanation to the appearance of scars 
in individual wavefunctions. Obviously these will appear whenever one particular factor 
&cP’.oj(E) (or few in more general cases) is significant while all the other are negligible. 
Note that when i ‘ p . n J ( E )  is large, ‘usually all i ( p J ’ ” ( E )  with m < n are large too. Moreover, 
when the instability exponent is not too small, Ap(E) Ft: &(P,o ) (E) .  Therefore, usually, a 
study of the functions i\(p.OJ(E) will be sufficient for a crude estimate of the scar weights. 

The exponential growth in the number of periodic orbits, as their action increases 
implies that scarred wavefunctions are likely to appear only at low enough energies 

P 
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where the number of primitive penodic trajectories participating in the construction of the 
wavefunction is still small. At high energies, an exponentially large number of functions 
i ‘ ” , n J ( E )  contribute to the eigenstate, and the probability for a situation where only one or 
few of them are significant, while all the others negligible, becomes very small. 

Furthermore, in the limit of high energy, significant contributions to the wavefunctions 
will come from long orbits as is clear from (3.64). For chaotic systems these explore almost 
the whole energy surface uniformly [35]. However, the scars do not get more concentrated 
as Tp -+ 03. The fringe spacing, that is of order hf near the periodic orbit and of order h far 
from the trajectory, is independent of the instability exponent. Therefore contributions of 
long periodic orbits will overlap, and the pattem of scars will probably be washed out. It is 
still not clear how to calculate these overlaps. As speculated by Berry [31], it is reasonable 
that the collective superposition of the long orbits results in a Gaussian random function 
decorating a smooth background. 

These arguments suggest that scarred wavefunctions become increasingly rare as 
E -+ 03. We argue that scars will also not appear in the eigenstates of the low-energy 
limit. The reason is that a scarred wavefunction describes a particle which moves in a 
relatively narrow region in the configuration space, therefore its momentum is high and 
hence also its kinetic energy. Thus, only for a restricted range of energy scars are expected 
to appear. In this sense, scarred wavefunctions are rare in chaotic systems. 

There is still a lack of understanding regarding the functions i ( p J ) ( E ) .  Yet, there are 
some indications that at least in the low-energy regime, the spectral detenninant (2.3) may 
be approximated by the real part of the truncated product 1341. Investigating the possibility 
for a similar behaviour for A ( p . ” l ( E )  will provide further theoretical understanding of the 
appearance of scars. 

Suppose that at a certain eigenenergy E, there is a situation where one of the terms in 
the truncated product of the dynamical zeta function (2.1), 

F P. - - (1 - ,ci l~JS”.iE~l-- iy~.-- j4.  1 (5.13) 

is very small compared with all the others. Such a situation is possible when the instability 
exponent up. is close to zero, that is when p’ corresponds to a short periodic orbit. Except 
in the function A‘p’.o)(Ea), this factor appears in all ALP.n)(Ea) where p # p*.  Assuming 
that the spectral determinant as well as the functions Afp*nJ(Ee) can be approximated for 
some purposes by the huncated product, one concludes that A(p,n)(Ea) are pzoportional to 
(5.131, and therefore very small. However, since this term is missing from the product of 
A‘P’.or(E,), this function is large compared to the others, therefore A,.(E,) is dominant 
among all Ap(Eu) and the main contribution to the Wigner function Wu(x) will come from 
the primitive periodic orbits p* .  In agreement with previous results [18,29,30,39], these 
arguments show that, usually, scarred wavefunctions will correspond to the short periodic 
orbits of the classical dynamics, for which the instability exponents are relatively small. 

It is instructive to derive an expression for the scar weight Yp.(E,) in which the 
dependence on the small instability constant up. is clear. Inserting the sum rule (5.12) 
into (5.4) yields 

(5.14) 

where 

(5.15) 



Eigenfunctions of chaotic systems 2133 

The sum over p converges, since A,(&) = 0 for long periodic orbits that do not satisfy 
the bound (5.1). For such orbits Ap(E)  practically vanishes due to the Erfc term in 
(5.3) and since the corresponding pseudo-orbits periods &,, = aS,,,/aE are larger than 
Tp. Moreover, due to the above assumptions, each one of the Ap(Ea) with p f p' is 
proportional to the factor (5.13) where its smallest (absolute) value is Fp. zz up./2 for small 
values of up.. Therefore, 

c = cup. (5.16) 

where (? is a constant factor independent of U,. (to the lowest order). 
In more complicated cases, a scarred wavefunction may contain contributions from more 

than one periodic orbit. Such a situation was related to the avoided crossing of the energy 
levels [24,26]. However, the structure of formula (3.64) for the Wigner function suggests 
that, in the general situation, all the primitive periodic orbits satisfying (5.1), contribute to 
the wavefunction with weights determined by the a'P."'(E,) of (5.3). 

- 

6. Discussion 

The main results of the paper are (3.62) and (3.64) for the resummed semiclassical 
Wigner function corresponding to an eigenstate. This enables us in principle to calculate 
eigenstates of chaotic systems in terms of classical periodic orbits, within the accuracy of 
the semiclassical approximation. The required number of periodic orbits is similar to the 
one required in order to obtain the energy spectrum. The reason is that XRpX in (3.60) 
is bounded in phase space, while S, and S, grow with the length of the orbits. Therefore 
the effective truncation of the sums in (3.64) by the complementary error function is 
approximately the same as was found for the spectral determinant by Beny and Keating [SI. 

This bound on the required number of periodic orbits is similar to the bound obtained 
by Berry and Keating [SI, Bogomolny [13], and Doron and Smilansky [E]. Since the 
number of periodic orbits proliferates exponentially with their length, in practice, (3.64) 
enables calculation of eigenfunctions of relatively low energies which are sufficiently high 
for the semiclassical approximation to apply. This is also the case for the semiclassical 
approximation for the spectrum, therefore it can be regarded as its extension from the 
spectrum to eigenfunctions. 

Integration over the momenta in (3.64) leads to the probability density corresponding 
to an eigenstate. The resulting formula (4.3) is the resummed version of the corresponding 
quantity that was calculated by Bogomolny [29]. 

Equation (3.25) can be written as a logarithmic derivative of a zeta function following 
the derivation of (5.7) that was presented in [3S] 

Formula (5.4) for the effective scar strength is obtained by averaging of (3.64) over a 
small region in phase space. It is a resummed version of an equation that was obtained 
earlier by a somewhat different method by Eckhardt er al [38]. It enables us to calculate 
the scar strength for sufficiently low~energies. This should enable us to predict scarring if 
the periodic orbits are known. 

The main problems that one encounters in the calculation of eigenstates are similar to 
those encountered in the calculation of the eigenenergies. One would like to find a method 
that does not require an exponentially large number of periodic orbits, similar to the method 
that was proposed for the calculation of the spectrum [16]. 

The analyticity of N ( z ;  ( l / h )  + z) that was assumed in (3.39) for sufficiently wide 
ship around the real z axis requires rigorous treatment that was not attempted in the present 
work. 
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Appendix A. Expansion of the term XJ[(M,  - O/(Mp + 0lX 

In this appendix formula (3.13) is proved. 
monodromy matrix M,,, one finds 

Starting from expression (3.12) for the 

M p  - I 
J - =  J- 

where J is the unit symplectic matrix given by (3.10) and v," are the eigenvectors of the 
monodromy matrix; thus, 

MP$ = e%$. (-4.2) 

Extraction of the factor (1 - e-".)/(l +e-"?) from (A.l) yields 

M p - 1  1 - 2  1 0 1  1 0  
M p + I  l + z V l A V ;  

J-=- 

where z = e-'P. After multiplying the matrices one obtains 

Finally, using 

V+ P A V -  P ~ + J v -  P P = vt PI U- PZ - u+v-  P? Pl (A.4) 

and defining R," according to (3.15) leads to the required result (3.13). 

Appendix B. The functional equation 

In this appendix, the functional equation (3.27) for the Wigner function multiplied by hD is 
proved. Let 'H be the Hamiltonian of a system satisfying the timeindependent Schrodinger 
equation, 

7f I $a) = E .  I $m), (B.1) 
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When A -+ -A the Hamiltonian transforms to its conjugate X*, therefore its new 
eigenfunctions are I @;). namely, 

'H* I ?G) = E,  I g). 
According to the definition of the Wigner function, 

(B.2) 

w CL ( I, A) = j @& + fQ')@:(q - fq') (B.3) 

and the corresponding expression for the A-reversed Hamiltonian is 

W&,A) =./dq'e+"/h'm'@:(q+ $q')@-(q-$q'). 03.4) 

Manifestly, expressions (B.3) and (8.4) are complex conjugates of one another, and, since 
the Wigner function is a real function for real values of 2, these two expressions are equal, 
leading to (3.27). 

Appendix C. Dirichlet representation of A@."'(&) 

In this appendix, the amplitudes ch"' that are required for the Dirichlet sum A'p.")(E) of 
(3.29) are derived. First, 'in order to expand (3.26) one needs an extension of the Euler 
identity (2.5) for the case 

For this purpose we define the functions 

m m 
n(l - a x j )  = C(-a)"d,(x).  
j=O m=O 

It wili be convenient to introduce new functions 

d k ' ( x )  = nj,+h+..+jm 

j ,  > j p - >  j ,  
j!.j2.-jm#n 

Thus the expression for (C.1) is obtained from (C.3) simply by replacing d,(x) by dkl(n), 
namely 
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To obtain a simple expression for the functions dkl(x), note that one may express ('2.4) as 
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& ) ( x )  = xjl+h+-+jm - 2 xj,+j*+-+jm . 
j ,>j2> ... >j ,  i=l j,> j,> ... > j. 

i- 

The first tem on the right-hand side is clearly d, , , (~ ) ,  while the second tem is 

This follows from the fact that choosing one of the ji to be equal to n forces all the others 
to be different from n. Therefore the recursive formula 

d,$"(x) = d,,,(X) - x"df!l(x) (C.8) 

is satisfied, leading to 

For most applications only the term d,!? is required. In this case the calculation of df'(x) 
is trivial since nz,(l - ax') reduces to (C.3) with a replaced by ax, leading to the 
identification 

d:'(x) = x"d,(x) . ((2.10) 

Using this notation it is straightforward to see that the amplitudes c y '  in (3.29) are given 
by 

&"I P = n ( - 1 ) ~  e-=#/% e-%ml/dmP,(e-"~) 
P'+P 

( - l ) m g  e-up/21mD+2n+ll e- i~plmp+l )d(n l  (C.11) 
mP 

where in the first product a is identified with e-'d/2+(i~K1s#-iy. and x with (p' # p ) ,  
while in the second product a = e-"~/2+(im)s~-i~p and x = e-''. The values of mp, and mp 
are selected so that 

(C.12) 
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